Praxis

Advancing Titanium

MENU
  • About Us
    • Leadership Team
    • Certifications
  • Technologies
    • Titanium Metal Injection Molding
    • Porous Titanium
    • PMTi
    • TiRx™
    • Secondary Finishing
    • Research & Development
    • References
  • Industries
    • Medical
    • Aerospace & Defense
    • Automotive & Consumer
    • Titanium Suppressor Baffles
  • Resource Library
  • Careers
  • Events
  • Blog
  • Contact
  • About Us
    • Leadership Team
    • Certifications
  • Industries
    • Medical
    • Aerospace & Defense
    • Automotive & Consumer
  • Technologies
    • Titanium Metal Injection Molding
      • Process Description
      • Process Comparison
      • Technical Data
    • Porous Titanium
    • PMTi
    • TiRx™
    • Secondary Finishing
    • Research & Development
    • References
  • Careers
    • Employee Testimonials
      • Feed Stock Technician
      • Metrology Technician
      • Principal New Product Development Engineer
      • Quality Control Technician
  • Contact
  • Resource Library
    • Resource Request

Technical Data

Titanium Materials

PRAXIS’ standard offering is Ti-6Al-4V, Grade 5 alloy manufactured in an ISO-13485 certified environment. PRAXIS’ material complies with the chemical and mechanical property requirements of the following specifications: ASTM F2885, ASTM F1472, ASTM B348, ASTM B381, AMS 4928 and AMS 6931.

Titanium has high specific strength, low weight, excellent corrosion resistance and is biocompatible. PRAXIS also offers several grades of titanium alloys, commercially pure and PRAXIS’ enhanced fatigue performance titanium, TiRxTM.

Grade 5 Titanium (Qualified ASTM F2885 )
Praxis has completely qualified a metal injection molding process which meets the ASTM F2885 standard. By extensively qualifying this process, we can consistently deliver high quality products to medical market and other markets with critical performance requirements. All manufacturing is undertaken in an ISO 13485 environment. Our process is extensively monitored through every manufacturing step and each furnace load is certified to the ASTM F2885 standard for metal injection molding of Ti-6Al-4V materials.

TiRx Grade 5 Titanium — High fatigue performance
Our standard Grade 5 material delivers fatigue performance in excess of 70 ksi (RBF). While this is suitable for most applications, if higher fatigue performance is required the microstructure can be improved to increase the fatigue performance in excess of 90 ksi (RBF). This enhanced performance is equivalent to Grade 5 forged or wrought material and allows Titanium Injection Molding to be used in load bearing or fatigue sensitive applications such as orthopaedic implants or aerospace fasteners.

This enhanced performance is achieved while maintaining our certification to the ASTM F2885 standard for metal injection molding of Ti-6Al-4V material.
• Integrates seamlessly with 3DT™ to Co-Form high performance implant bodies.
• Outstanding Fatigue Performance (RFB >90ksi @ 10M cycles)

Specialized Titanium materials
Praxis’ expertise of Grade 5 material is readily applied to manufacture commercially pure (CP) titanium as well as other titanium alloys. Additional materials are currently under development at Praxis to meet the requirements for high strength and cosmetic Titanium applications.

Chemical Composition (%)
  Composition, & (Mass/Mass) Typical
Element min max Ti-6Al-4V Ti-6Al-4V (TiRXTM)
Carbon — 0.08 0.05 0.05
Oxygen — 0.2 0.17 0.18
Aluminum 5.5 6.75 5.9 5.9
Vanadium 3.5 4.5 4.0 4.0
Titanium Balance   Balance Balance
Mechanical Characteristics
      Typical  
Property min max Ti-6Al-4V Ti-6Al-4V (TiRX)
Density (g/cm3) 4.34 — 4.43 4.43
Ultimate Strength 900 Mpa — 970 MPa 1034 MPa
  (130 ksi) — (140 ksi) (150 ksi)
Yield Strength 830 MPa — 862 MPa 930 MPa
  (120 ksi) — (125 ksi) (135 ksi)
Elongation 10% — 20% 15%
Reduction in Area 15% — 37%  
Fatigue Strength* — — 496 MPa 640 MPa
  — — 72 (ksi) (93 ksi)
*ASTM E468-11: 10M cycle runnout values
Material Grade 5 (Ti-6Al-4V) TiRx (Ti-6Al-4V)
Application Static High Fatigue (HCF)
YS (ksi / MPa) 125 / 860 135 / 930
UTS (ksi / MPa) 140 / 965 150 / 1035
Elongation (%) ~20 ~15
Fatigue (RBF)@ 10M cycles (ksi / MPa) ~70 / 483 ~92 / 635

*Average values

  • About Us
    • Certifications
    • Leadership Team
  • Technologies
    • References
    • Research & Development
    • Secondary Finishing
    • TiRx™
    • PMTi
    • Porous Titanium
    • Titanium Metal Injection Molding
      • Technical Data
      • Process Comparison
      • Process Description
  • Industries
    • Automotive & Consumer
    • Aerospace & Defense
    • Medical
  • RESOURCE LIBRARY
  • Events
  • Contact
  • DATA PRIVACY
linkedin
twitter

© 2025 Praxis Powder Technology, Inc.